Search results
Results From The WOW.Com Content Network
If is a standard normal deviate, then = + will have a normal distribution with expected value and standard deviation . This is equivalent to saying that the standard normal distribution Z {\textstyle Z} can be scaled/stretched by a factor of σ {\textstyle \sigma } and shifted by μ {\textstyle \mu } to yield a different normal distribution ...
The graph of a Gaussian is a characteristic symmetric "bell curve" shape. The parameter a is the height of the curve's peak, b is the position of the center of the peak, and c (the standard deviation, sometimes called the Gaussian RMS width) controls the width of the "bell".
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
If the considered function is the density of a normal distribution of the form = [()] where σ is the standard deviation and x 0 is the expected value, then the relationship between FWHM and the standard deviation is [1] = .
Another way is to define the cdf () as the probability that a sample lies inside the ellipsoid determined by its Mahalanobis distance from the Gaussian, a direct generalization of the standard deviation. [13] In order to compute the values of this function, closed analytic formula exist, [13] as follows.
Gaussian random fields on the sphere are useful (for example) when analysing the anomalies in the cosmic microwave background radiation (see, [1] pp. 8–9); brain images obtained by positron emission tomography (see, [1] pp. 9–10). Sometimes, a value of a Gaussian random function deviates from its expected value by several standard deviations.