When.com Web Search

  1. Ad

    related to: real life derivatives examples geometry pdf free

Search results

  1. Results From The WOW.Com Content Network
  2. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Here is a particular example, the derivative of the squaring function at the input 3. Let f(x) = x 2 be the squaring function. The derivative f′(x) of a curve at a point is the slope of the line tangent to that curve at that point. This slope is determined by considering the limiting value of the slopes of the second lines.

  3. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    Differential geometry has applications to both Lagrangian mechanics and Hamiltonian mechanics. Symplectic manifolds in particular can be used to study Hamiltonian systems. Riemannian geometry and contact geometry have been used to construct the formalism of geometrothermodynamics which has found applications in classical equilibrium thermodynamics.

  4. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function at that point. Differential calculus and integral calculus are connected by the fundamental theorem of calculus. This states that differentiation is the reverse process to integration.

  5. Quotient rule - Wikipedia

    en.wikipedia.org/wiki/Quotient_rule

    In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions. Let () = (), where both f and g are differentiable and () The quotient rule states that the derivative of h(x) is

  6. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    Simple examples. A simple example of a regular surface is given by the 2-sphere {(x, y, z) | x 2 + y 2 + z 2 = 1}; this surface can be covered by six Monge patches (two of each of the three types given above), taking h(u, v) = ± (1 − u 2 − v 2) 1/2. It can also be covered by two local parametrizations, using stereographic projection.

  7. Differentiable manifold - Wikipedia

    en.wikipedia.org/wiki/Differentiable_manifold

    Given a real valued function f on an n dimensional differentiable manifold M, the directional derivative of f at a point p in M is defined as follows. Suppose that γ(t) is a curve in M with γ(0) = p, which is differentiable in the sense that its composition with any chart is a differentiable curve in R n. Then the directional derivative of f ...

  8. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    In mathematics, the branch of real analysis studies the behavior of real numbers, sequences and series of real numbers, and real functions. [1] Some particular properties of real-valued sequences and functions that real analysis studies include convergence , limits , continuity , smoothness , differentiability and integrability .

  9. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    Combining derivatives of different variables results in a notion of a partial differential operator. The linear operator which assigns to each function its derivative is an example of a differential operator on a function space. By means of the Fourier transform, pseudo-differential operators can be defined which allow for fractional calculus.