Search results
Results From The WOW.Com Content Network
The hydrophobic effect is the observed tendency of nonpolar substances to aggregate in an aqueous solution and to be excluded by water. [ 1 ] [ 2 ] The word hydrophobic literally means "water-fearing", and it describes the segregation of water and nonpolar substances, which maximizes the entropy of water and minimizes the area of contact ...
Water on hydrophobic surfaces will exhibit a high contact angle. Examples of hydrophobic molecules include the alkanes, oils, fats, and greasy substances in general. Hydrophobic materials are used for oil removal from water, the management of oil spills, and chemical separation processes to remove non-polar substances from polar compounds. [2]
Cloth, treated to be hydrophobic, shows a high contact angle. The theoretical description of contact angle arises from the consideration of a thermodynamic equilibrium between the three phases: the liquid phase (L), the solid phase (S), and the gas or vapor phase (G) (which could be a mixture of ambient atmosphere and an equilibrium concentration of the liquid vapor).
Reactions within the fuel cell produce waste gas CO 2 which can be vented out through these hydrophobic membranes. [62] The membrane consists of many microcavities which allow the gas to escape, while its hydrophobicity characteristic prevents the liquid fuel from leaking through.
In aqueous media, the driving force of the aggregation is the "hydrophobic effect". The aggregates formed by amphiphilic molecules are characterised by structures in which the hydrophilic head-groups expose their surface to aqueous solution, shielding the hydrophobic chains from contact with water.
Hydrophobic sand (or magic sand) is a toy made from sand coated with a hydrophobic compound. The presence of the hydrophobic compound causes the grains of sand to adhere to one another and form cylinders (to minimize surface area) when exposed to water, and form a pocket of air around the sand. [1] The pocket of air makes magic sand unable to ...
Surfactants are absorbed onto the liquid–vapor, solid–liquid, and solid–vapor interfaces, which modify the wetting behavior of hydrophobic materials to reduce the free energy. When surfactants are absorbed onto a hydrophobic surface, the polar head groups face into the solution with the tail pointing outward.
Such materials are produced by reaction of silica gel with trimethoxyoctadecylsilane]]. The individual links involve silanol groups displacing the methoxy groups, forming an Si-O-Si bonds. This reaction changes the hydrophilic silanol groups into hydrophobic coatings.