Search results
Results From The WOW.Com Content Network
The ideal gas law is the equation of state for an ideal gas, given by: = where P is the pressure; V is the volume; n is the amount of substance of the gas (in moles) T is the absolute temperature; R is the gas constant, which must be expressed in units consistent with those chosen for pressure, volume and temperature.
In an ideal solution, the chemical potential of species i (μ i) is dependent on temperature and pressure. μ i0 (T, P) is defined as the chemical potential of pure species i. Given this definition, the chemical potential of species i in an ideal solution is
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
Chemical potential / Particle number; ... Defining equation SI unit Dimension ... Ideal gas law: p = pressure; V = volume of container;
The equation of state is the ideal gas law ... For a single component system, the chemical potential equals the Gibbs energy per amount of substance, ...
At present, there is no single equation of state that accurately predicts the properties of all substances under all conditions. An example of an equation of state correlates densities of gases and liquids to temperatures and pressures, known as the ideal gas law, which is roughly accurate for weakly polar gases at low pressures and moderate temperatures.
This is one form of the Gibbs fundamental equation. [10] In the infinitesimal expression, the term involving the chemical potential accounts for changes in Gibbs free energy resulting from an influx or outflux of particles. In other words, it holds for an open system or for a closed, chemically reacting system where the N i are changing. For a ...
A thermodynamic potential (or more accurately, a thermodynamic potential energy) [1] [2] is a scalar quantity used to represent the thermodynamic state of a system. Just as in mechanics , where potential energy is defined as capacity to do work, similarly different potentials have different meanings.