Search results
Results From The WOW.Com Content Network
The expression of heterologous proteins by viruses is the basis of several manufacturing processes that are currently being used for the production of various proteins such as vaccine antigens and antibodies. Industrial processes have been recently developed using viral vectors and several pharmaceutical proteins are currently in pre-clinical ...
Each type of protein is a specialist that usually only performs one function, so if a cell needs to do something new, it must make a new protein. Viruses force the cell to make new proteins that the cell does not need, but are needed for the virus to reproduce. Protein synthesis consists of two major steps: transcription and translation. [34]
Viruses are among the biggest threats to humanity, with the current pandemic showing how these pathogens can shut down countries, halt entire industries and cause untold human suffering as they ...
Examples of class II viral fusion proteins include the dengue virus E protein, and the west nile virus E protein. [5] [6] Class III: Structural conformation is a combination of features from Class I and Class II viral membrane fusion proteins. An example of a Class III viral fusion protein is the rabies virus glycoprotein, G. [6]
Viruses can, and do, turn our world upside down. But they also made us into what we are today.
Virus crystallisation is the re-arrangement of viral components into solid crystal particles. [1] The crystals are composed of thousands of inactive forms of a particular virus arranged in the shape of a prism. [2] The inactive nature of virus crystals provide advantages for immunologists to effectively analyze the structure and function behind ...
To enter the cells, proteins on the surface of the virus interact with proteins of the cell. Attachment, or adsorption, occurs between the viral particle and the host cell membrane. A hole forms in the cell membrane, then the virus particle or its genetic contents are released into the host cell, where replication of the viral genome may commence.
Viruses enter host cells using a variety of mechanisms, including the endocytic and non-endocytic routes. [4] They can also fuse at the plasma membrane and can spread within the host via fusion or cell-cell fusion. [5] Viruses attach to proteins on the host cell surface known as cellular receptors or attachment factors to aid entry. [6]