When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gell-Mann matrices - Wikipedia

    en.wikipedia.org/wiki/Gell-Mann_matrices

    These matrices are traceless, Hermitian, and obey the extra trace orthonormality relation, so they can generate unitary matrix group elements of SU(3) through exponentiation. [1] These properties were chosen by Gell-Mann because they then naturally generalize the Pauli matrices for SU(2) to SU(3), which formed the basis for Gell-Mann's quark ...

  3. Generator matrix - Wikipedia

    en.wikipedia.org/wiki/Generator_matrix

    where is the identity matrix and P is a () matrix. When the generator matrix is in standard form, the code C is systematic in its first k coordinate positions. [3] A generator matrix can be used to construct the parity check matrix for a code

  4. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  5. Unitary matrix - Wikipedia

    en.wikipedia.org/wiki/Unitary_matrix

    In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U −1 equals its conjugate transpose U *, that is, if = =, where I is the identity matrix.. In physics, especially in quantum mechanics, the conjugate transpose is referred to as the Hermitian adjoint of a matrix and is denoted by a dagger (⁠ † ⁠), so the equation above is written

  6. Orthogonal group - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_group

    It is the group of complex orthogonal matrices, complex matrices whose product with their transpose is the identity matrix. As in the real case, O(n, C) has two connected components. The component of the identity consists of all matrices of determinant 1 in O(n, C); it is denoted SO(n, C).

  7. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    The th column of an identity matrix is the unit vector, a vector whose th entry is 1 and 0 elsewhere. The determinant of the identity matrix is 1, and its trace is . The identity matrix is the only idempotent matrix with non-zero determinant. That is, it is the only matrix such that:

  8. General linear group - Wikipedia

    en.wikipedia.org/wiki/General_linear_group

    In mathematics, the general linear group of degree n is the set of n×n invertible matrices, together with the operation of ordinary matrix multiplication.This forms a group, because the product of two invertible matrices is again invertible, and the inverse of an invertible matrix is invertible, with the identity matrix as the identity element of the group.

  9. Representation theory of the Lorentz group - Wikipedia

    en.wikipedia.org/wiki/Representation_theory_of...

    Its kernel must in particular take the identity matrix to itself, A † IA = A † A = I and therefore A † = A −1. Thus AX = XA for A in the kernel so, by Schur's lemma, [nb 19] A is a multiple of the identity, which must be ±I since det A = 1. [75] The space is mapped to Minkowski space M 4, via