Search results
Results From The WOW.Com Content Network
This difference in pressure causes the upward buoyancy force. The buoyancy force exerted on a body can now be calculated easily, since the internal pressure of the fluid is known. The force exerted on the body can be calculated by integrating the stress tensor over the surface of the body which is in contact with the fluid:
This difference in pressure causes the upward buoyancy force. The buoyancy force exerted on a body can now be calculated easily, since the internal pressure of the fluid is known. The force exerted on the body can be calculated by integrating the stress tensor over the surface of the body which is in contact with the fluid:
In medicine, hydrostatic pressure in blood vessels is the pressure of the blood against the wall. It is the opposing force to oncotic pressure. In capillaries, hydrostatic pressure (also known as capillary blood pressure) is higher than the opposing “colloid osmotic pressure” in blood—a “constant” pressure primarily produced by ...
Measurement of volume by displacement, (a) before and (b) after an object has been submerged. The amount by which the liquid rises in the cylinder (∆V) is equal to the volume of the object. In fluid mechanics, displacement occurs when an object is largely immersed in a fluid, pushing it out of the way and taking its place. The volume of the ...
It is also called hydrostatic pressure, and is defined as the pressure in a fluid measured at a certain point within itself when at equilibrium. [2] Generally, turgor pressure is caused by the osmotic flow of water and occurs in plants, fungi, and bacteria. The phenomenon is also observed in protists that have cell walls. [3]
When the pressure in one part of a physical system is reduced relative to another, the fluid or gas in the higher pressure region will exert a force relative to the region of lowered pressure, referred to as pressure-gradient force. If all gas or fluid is removed the result is a perfect vacuum in which the pressure is zero.
The net force exerted by the air occurs as a pressure difference over the airfoil's surfaces. [82] Pressure in a fluid is always positive in an absolute sense, [83] so that pressure must always be thought of as pushing, and never as pulling. The pressure thus pushes inward on the airfoil everywhere on both the upper and lower surfaces.
Neutral buoyancy occurs when an object's average density is equal to the density of the fluid in which it is immersed, resulting in the buoyant force balancing the force of gravity that would otherwise cause the object to sink (if the body's density is greater than the density of the fluid in which it is immersed) or rise (if it is less).