Search results
Results From The WOW.Com Content Network
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
In a topological abelian group, convergence of a series is defined as convergence of the sequence of partial sums. An important concept when considering series is unconditional convergence, which guarantees that the limit of the series is invariant under permutations of the summands.
While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.
"Beta-convergence" on the other hand, occurs when poor economies grow faster than rich ones. Economists say that there is "conditional beta-convergence" when economies experience "beta-convergence" but conditional on other variables (namely the investment rate and the population growth rate) being held constant.
The two classical summation methods for series, ordinary convergence and absolute convergence, define the sum as a limit of certain partial sums. These are included only for completeness; strictly speaking they are not true summation methods for divergent series since, by definition, a series is divergent only if these methods do not work.
The definition of convergence in distribution may be extended from random vectors to more general random elements in arbitrary metric spaces, and even to the “random variables” which are not measurable — a situation which occurs for example in the study of empirical processes. This is the “weak convergence of laws without laws being ...
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.
A filter is a related idea in topology that allows for a general definition for convergence in general topological spaces. The two ideas are equivalent in the sense that they give the same concept of convergence. [12]