Search results
Results From The WOW.Com Content Network
An alternative expression for the escape velocity v e particularly useful at the surface on the body is: = where r is the distance between the center of the body and the point at which escape velocity is being calculated and g is the gravitational acceleration at that distance (i.e., the surface gravity). [11]
In astrodynamics, the characteristic energy is a measure of the excess specific energy over that required to just barely escape from a massive body. The units are length 2 time −2, i.e. velocity squared, or energy per mass.
The blue path in this image is an example of a hyperbolic trajectory. A hyperbolic trajectory is depicted in the bottom-right quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the hyperbolic trajectory is shown in red.
One of the best-known examples of an event horizon derives from general relativity's description of a black hole, a celestial object so dense that no nearby matter or radiation can escape its gravitational field. Often, this is described as the boundary within which the black hole's escape velocity is greater than the speed of light.
It is related to the hyperbolic excess velocity (the orbital velocity at infinity) by = =. It is relevant for interplanetary missions. Thus, if orbital position vector ( r {\displaystyle \mathbf {r} } ) and orbital velocity vector ( v {\displaystyle \mathbf {v} } ) are known at one position, and μ {\displaystyle \mu } is known, then the energy ...
One classical thermal escape mechanism is Jeans escape, [1] named after British astronomer Sir James Jeans, who first described this process of atmospheric loss. [2] In a quantity of gas, the average velocity of any one molecule is measured by the gas's temperature, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy.
where E is the total orbital energy, L is the angular momentum, m rdc is the reduced mass, and the coefficient of the inverse-square law central force such as in the theory of gravity or electrostatics in classical physics: = (is negative for an attractive force, positive for a repulsive one; related to the Kepler problem)
The narrow escape problem is a ubiquitous problem in biology, biophysics and cellular biology which has the following formulation: a Brownian particle (ion, molecule, or protein) is confined to a bounded domain (a compartment or a cell) by a reflecting boundary, except for a small window through which it can escape. The narrow escape problem is ...