When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    The graphs of y = f(x) and y = f −1 (x). The dotted line is y = x. If f is invertible, then the graph of the function = is the same as the graph of the equation = (). This is identical to the equation y = f(x) that defines the graph of f, except that the roles of x and y have

  3. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    The inverse function theorem can also be generalized to differentiable maps between Banach spaces X and Y. [20] Let U be an open neighbourhood of the origin in X and F : U → Y {\displaystyle F:U\to Y\!} a continuously differentiable function, and assume that the Fréchet derivative d F 0 : XY {\displaystyle dF_{0}:X\to Y\!} of F at 0 is ...

  4. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    One has always X ⊆ f −1 (f(X)) and f(f −1 (Y)) ⊆ Y, where f(X) is the image of X and f −1 (Y) is the preimage of Y under f. If f is injective, then X = f −1 (f(X)), and if f is surjective, then f(f −1 (Y)) = Y. For every function h : XY, one can define a surjection H : X → h(X) : x → h(x) and an injection I : h(X) → Y ...

  5. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  6. Minkowski's question-mark function - Wikipedia

    en.wikipedia.org/wiki/Minkowski's_question-mark...

    In mathematics, Minkowski's question-mark function, denoted ?(x), is a function with unusual fractal properties, defined by Hermann Minkowski in 1904. [1] It maps quadratic irrational numbers to rational numbers on the unit interval , via an expression relating the continued fraction expansions of the quadratics to the binary expansions of the ...

  7. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  8. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    The function f : R → R defined by f(x) = 2x + 1 is surjective (and even bijective), because for every real number y, we have an x such that f(x) = y: such an appropriate x is (y1)/2. The function f : R → R defined by f(x) = x 3 − 3x is surjective, because the pre-image of any real number y is the solution set of the cubic polynomial ...

  9. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    An involution is a function f : XX that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.