When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  3. Mutual exclusivity - Wikipedia

    en.wikipedia.org/wiki/Mutual_exclusivity

    In logic, two propositions and are mutually exclusive if it is not logically possible for them to be true at the same time; that is, () is a tautology. To say that more than two propositions are mutually exclusive, depending on the context, means either 1. "() () is a tautology" (it is not logically possible for more than one proposition to be true) or 2. "() is a tautology" (it is not ...

  4. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    If either event A or event B can occur but never both simultaneously, then they are called mutually exclusive events. If two events are mutually exclusive, then the probability of both occurring is denoted as () and = = If two events are mutually exclusive, then the probability of either occurring is denoted as () and = = + () = + = + ()

  5. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    To qualify as a probability distribution, the assignment of values must satisfy the requirement that if you look at a collection of mutually exclusive events (events that contain no common results, e.g., the events {1,6}, {3}, and {2,4} are all mutually exclusive), the probability that any of these events occurs is given by the sum of the ...

  6. Collectively exhaustive events - Wikipedia

    en.wikipedia.org/wiki/Collectively_exhaustive_events

    Another example of events being collectively exhaustive and mutually exclusive at same time are, event "even" (2,4 or 6) and event "odd" (1,3 or 5) in a random experiment of rolling a six-sided die. These both events are mutually exclusive because even and odd outcome can never occur at same time. The union of both "even" and "odd" events give ...

  7. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    If events A 1, A 2, ..., are mutually exclusive and exhaustive, i.e., one of them is certain to occur but no two can occur together, we can determine the proportionality constant by using the fact that their probabilities must add up to one. For instance, for a given event A, the event A itself and its complement ¬A are

  8. Probability interpretations - Wikipedia

    en.wikipedia.org/wiki/Probability_interpretations

    This can be represented mathematically as follows: If a random experiment can result in N mutually exclusive and equally likely outcomes and if N A of these outcomes result in the occurrence of the event A, the probability of A is defined by =. There are two clear limitations to the classical definition. [18]

  9. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    Independent: Each outcome of the die roll will not affect the next one, which means the 10 variables are independent from each other. Identically distributed : Regardless of whether the die is fair or weighted, each roll will have the same probability of seeing each result as every other roll.