Ads
related to: radius calculator with two points and 3 steps map
Search results
Results From The WOW.Com Content Network
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The distance from a point to a plane in three-dimensional Euclidean space [7] The distance between two lines in three-dimensional Euclidean space [8] The distance from a point to a curve can be used to define its parallel curve, another curve all of whose points have the same distance to the given curve. [9]
Angular distance or angular separation is the measure of the angle between the orientation of two straight lines, rays, or vectors in three-dimensional space, or the central angle subtended by the radii through two points on a sphere.
These lines are parallel to the desired tangent lines, because the situation corresponds to shrinking both circles C 1 and C 2 by a constant amount, r 2, which shrinks C 2 to a point. Two radial lines may be drawn from the center O 1 through the tangent points on C 3; these intersect C 1 at the desired tangent points. The desired external ...
The recursion terminates when P is empty, and a solution can be found from the points in R: for 0 or 1 points the solution is trivial, for 2 points the minimal circle has its center at the midpoint between the two points, and for 3 points the circle is the circumcircle of the triangle described by the points. (In three dimensions, 4 points ...
For example, to find the midpoint of the path, substitute σ = 1 ⁄ 2 (σ 01 + σ 02); alternatively to find the point a distance d from the starting point, take σ = σ 01 + d/R. Likewise, the vertex, the point on the great circle with greatest latitude, is found by substituting σ = + 1 ⁄ 2 π. It may be convenient to parameterize the ...
A tunnel between points on Earth is defined by a Cartesian line through three-dimensional space between the points of interest. The tunnel distance D t = 2 R sin D 2 R {\displaystyle D_{\textrm {t}}=2R\sin {\frac {D}{2R}}} is the great-circle chord length and may be calculated as follows for the corresponding unit sphere: