Search results
Results From The WOW.Com Content Network
The theory of the velocity of the transmission of the pulse through the circulation dates back to 1808 with the work of Thomas Young. [9] The relationship between pulse wave velocity (PWV) and arterial wall stiffness can be derived from Newton's second law of motion (=) applied to a small fluid element, where the force on the element equals the product of density (the mass per unit volume ...
The Moens–Korteweg equation states that PWV is proportional to the square root of the incremental elastic modulus, (E inc), of the vessel wall given constant ratio of wall thickness, h, to vessel radius, r, and blood density, ρ, assuming that the artery wall is isotropic and experiences isovolumetric change with pulse pressure. [5]
Increased aortic PWV has been shown to predict cardiovascular, and in some cases all-cause, mortality in individuals with end stage kidney disease, [15] hypertension, [16] diabetes mellitus [17] and in the general population. [18] [19] However, at present, the role of measurement of PWV as a general clinical tool remains to be established ...
An example of PWM [clarification needed] in an idealized inductor driven by a voltage source modulated as a series of pulses, resulting in a sine-like current in the inductor.
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
There are many ways to calculate the valve area of aortic stenosis. The most commonly used methods involve measurements taken during echocardiography. For interpretation of these values, the area is generally divided by the body surface area, to arrive at the patient's optimal aortic valve orifice area.
This dependence on microscopic variables is the central point of statistical mechanics. With a model of the microscopic constituents of a system, one can calculate the microstate energies, and thus the partition function, which will then allow us to calculate all the other thermodynamic properties of the system.
Lemkul et al. have used steered molecular dynamics simulations to calculate the potential of mean force to assess the stability of Alzheimer's amyloid protofibrils. [6] Gosai et al. have also used umbrella sampling simulations to show that potential of mean force decreases between thrombin and its aptamer (a protein-ligand complex) under the ...