When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Magnitude (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Magnitude_(mathematics)

    By definition, all Euclidean vectors have a magnitude (see above). However, a vector in an abstract vector space does not possess a magnitude. A vector space endowed with a norm, such as the Euclidean space, is called a normed vector space. [8] The norm of a vector v in a normed vector space can be considered to be the magnitude of v.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The magnitude of u computed this way is ‖ u ‖ = 2 sin θ, where θ is the angle of rotation. This does not work if R is symmetric. Above, if R − R T is zero, then all subsequent steps are invalid. In this case, it is necessary to diagonalize R and find the eigenvector corresponding to an eigenvalue of 1.

  4. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  5. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    A vector pointing from A to B. In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector [1] or spatial vector [2]) is a geometric object that has magnitude (or length) and direction. Euclidean vectors can be added and scaled to form a vector space.

  6. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The curl of a 3-dimensional vector field which only depends on 2 coordinates (say x and y) is simply a vertical vector field (in the z direction) whose magnitude is the curl of the 2-dimensional vector field, as in the examples on this page.

  7. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    The vector triple product is defined as the cross product of one vector with the cross product of the other two. The following relationship holds: The following relationship holds: a × ( b × c ) = ( a ⋅ c ) b − ( a ⋅ b ) c {\displaystyle \mathbf {a} \times (\mathbf {b} \times \mathbf {c} )=(\mathbf {a} \cdot \mathbf {c} )\mathbf {b ...

  8. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    The composition of two rotations is itself a rotation. Let (a 1, b 1, c 1, d 1) and (a 2, b 2, c 2, d 2) be the Euler parameters of two rotations. The parameters for the compound rotation (rotation 2 after rotation 1) are as follows:

  9. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    The vector's magnitude is its length, and its direction is the direction the arrow points. A vector in R 3 {\displaystyle \mathbb {R} ^{3}} can be represented by an ordered triple of real numbers. These numbers are called the components of the vector.