Search results
Results From The WOW.Com Content Network
The Scattering transfer parameters or T-parameters of a 2-port network are expressed by the T-parameter matrix and are closely related to the corresponding S-parameter matrix. However, unlike S parameters, there is no simple physical means to measure the T parameters in a system, sometimes referred to as Youla waves.
Z-parameters are also known as open-circuit impedance parameters as they are calculated under open circuit conditions. i.e., I x =0, where x=1,2 refer to input and output currents flowing through the ports (of a two-port network in this case) respectively.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The Beta distribution on [0,1], a family of two-parameter distributions with one mode, of which the uniform distribution is a special case, and which is useful in estimating success probabilities. The four-parameter Beta distribution, a straight-forward generalization of the Beta distribution to arbitrary bounded intervals [,].
The most important parameter in duct acoustics. If ω {\displaystyle \omega } is the dimensional frequency , then k 0 {\displaystyle k_{0}} is the corresponding free field wavenumber and H e {\displaystyle He} is the corresponding dimensionless frequency [ 7 ]
The parameter space is the space of all possible parameter values that define a particular mathematical model. It is also sometimes called weight space, and is often a subset of finite-dimensional Euclidean space. In statistics, parameter spaces are particularly useful for describing parametric families of probability distributions.
Such a parameter must affect the shape of a distribution rather than simply shifting it (as a location parameter does) or stretching/shrinking it (as a scale parameter does). For example, "peakedness" refers to how round the main peak is. [3] Probability density functions for selected distributions with mean 0 and variance 1.
A speaker with an efficiency of 100% (1.0) would output a watt for every watt of input. Considering the driver as a point source in an infinite baffle, at one metre this would be distributed over a hemisphere with area 2 π {\displaystyle 2\pi } m 2 for an intensity of 1 / ( 2 π ) {\displaystyle 1/(2\pi )} = 0.159155 W/m 2 .