Search results
Results From The WOW.Com Content Network
Butcher, John C. (2003), Numerical Methods for Ordinary Differential Equations, John Wiley, ISBN 978-0-471-96758-3. Dahlquist, Germund (1956), "Convergence and stability in the numerical integration of ordinary differential equations", Mathematica Scandinavica, 4: 33– 53, doi: 10.7146/math.scand.a-10454.
Example: consider the following differential equation (Kummer's equation with a = 1 and b = 2): ″ + ′ = The roots of the indicial equation are −1 and 0. Two independent solutions are 1 / z {\displaystyle 1/z} and e z / z , {\displaystyle e^{z}/z,} so we see that the logarithm does not appear in any solution.
Solving Ordinary Differential Equations. I. Nonstiff Problems. Springer Series in Computational Mathematics. Vol. 8 (2nd ed.). Springer-Verlag, Berlin. ISBN 3-540-56670-8. MR 1227985. Ernst Hairer and Gerhard Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems, second edition, Springer Verlag, Berlin, 1996.
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...
In mathematics, the annihilator method is a procedure used to find a particular solution to certain types of non-homogeneous ordinary differential equations (ODEs). [1] It is similar to the method of undetermined coefficients, but instead of guessing the particular solution in the method of undetermined coefficients, the particular solution is determined systematically in this technique.
Explicit and implicit methods are approaches used in numerical analysis for obtaining numerical approximations to the solutions of time-dependent ordinary and partial differential equations, as is required in computer simulations of physical processes.
Spectral methods can be used to solve differential equations (PDEs, ODEs, eigenvalue, etc) and optimization problems. When applying spectral methods to time-dependent PDEs, the solution is typically written as a sum of basis functions with time-dependent coefficients; substituting this in the PDE yields a system of ODEs in the coefficients ...
In mathematics, the method of characteristics is a technique for solving partial differential equations.Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation.