When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Skew-symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_matrix

    The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero. If is a real skew-symmetric matrix and is a real eigenvalue, then =, i.e. the nonzero eigenvalues of a skew-symmetric matrix are non-real. If is a real skew-symmetric matrix, then + is invertible, where is the identity matrix.

  3. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let Mat n {\displaystyle {\mbox{Mat}}_{n}} denote the space of n × n {\displaystyle n\times n} matrices.

  4. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  5. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    Every square diagonal matrix is symmetric, since all off-diagonal entries are zero. Similarly, each diagonal element of a skew-symmetric matrix must be zero, since each is its own negative. In linear algebra, a real symmetric matrix represents a self-adjoint operator over a real inner product space.

  6. Square matrix - Wikipedia

    en.wikipedia.org/wiki/Square_matrix

    If a real square matrix is symmetric, skew-symmetric, or orthogonal, then it is normal. If a complex square matrix is Hermitian, skew-Hermitian, or unitary, then it is normal. Normal matrices are of interest mainly because they include the types of matrices just listed and form the broadest class of matrices for which the spectral theorem holds ...

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    A square matrix A that is equal to its transpose, that is, A = A T, is a symmetric matrix. If instead, A is equal to the negative of its transpose, that is, A = −A T, then A is a skew-symmetric matrix.

  8. Symplectic vector space - Wikipedia

    en.wikipedia.org/wiki/Symplectic_vector_space

    If the underlying field has characteristic not 2, alternation is equivalent to skew-symmetry. If the characteristic is 2, the skew-symmetry is implied by, but does not imply alternation. In this case every symplectic form is a symmetric form, but not vice versa. Working in a fixed basis, can be represented by a matrix.

  9. Skew-Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-Hermitian_matrix

    Skew-Hermitian matrices can be understood as the complex versions of real skew-symmetric matrices, or as the matrix analogue of the purely imaginary numbers. [2] The set of all skew-Hermitian n × n {\displaystyle n\times n} matrices forms the u ( n ) {\displaystyle u(n)} Lie algebra , which corresponds to the Lie group U( n ) .