Search results
Results From The WOW.Com Content Network
convert a double to a float: d2i 8e 1000 1110 value → result convert a double to an int d2l 8f 1000 1111 value → result convert a double to a long dadd 63 0110 0011 value1, value2 → result add two doubles daload 31 0011 0001 arrayref, index → value load a double from an array dastore 52 0101 0010 arrayref, index, value →
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
JIS X 0208 is a 2-byte character set specified as a Japanese Industrial Standard, containing 6879 graphic characters suitable for writing text, place names, personal names, and so forth in the Japanese language.
Java bytecode is used at runtime either interpreted by a JVM or compiled to machine code via just-in-time (JIT) compilation and run as a native application. As Java bytecode is designed for a cross-platform compatibility and security, a Java bytecode application tends to run consistently across various hardware and software configurations. [3]
The Java virtual machine's set of primitive data types consists of: [12] byte, short, int, long, char (integer types with a variety of ranges) float and double, floating-point numbers with single and double precisions; boolean, a Boolean type with logical values true and false; returnAddress, a value referring to an executable memory address ...
Implicit type conversion, also known as coercion or type juggling, is an automatic type conversion by the compiler. Some programming languages allow compilers to provide coercion; others require it. In a mixed-type expression, data of one or more subtypes can be converted to a supertype as needed at runtime so that the program will run correctly.
The range of a double-double remains essentially the same as the double-precision format because the exponent has still 11 bits, [4] significantly lower than the 15-bit exponent of IEEE quadruple precision (a range of 1.8 × 10 308 for double-double versus 1.2 × 10 4932 for binary128).
In single precision, the bias is 127, so in this example the biased exponent is 124; in double precision, the bias is 1023, so the biased exponent in this example is 1020. fraction = .01000… 2 . IEEE 754 adds a bias to the exponent so that numbers can in many cases be compared conveniently by the same hardware that compares signed 2's ...