Search results
Results From The WOW.Com Content Network
The fictitious force called a pseudo force might also be referred to as a body force. It is due to an object's inertia when the reference frame does not move inertially any more but begins to accelerate relative to the free object. In terms of the example of the passenger vehicle, a pseudo force seems to be active just before the body touches ...
Centrifugal force is a fictitious force in Newtonian mechanics (also called an "inertial" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed radially away from the axis of rotation of the frame.
The centrifugal force acts outwards in the radial direction and is proportional to the distance of the body from the axis of the rotating frame. These additional forces are termed inertial forces, fictitious forces, or pseudo forces. By introducing these fictitious forces to a rotating frame of reference, Newton's laws of motion can be applied ...
In such a non-inertial reference frame, a mass that is at rest and has zero acceleration in an inertial reference system, because no forces are acting on it, will still have an acceleration and an apparent inertial, or pseudo or fictitious force will seem to act on it: in this situation the inertial force has a minus sign.
In general, the expression for any fictitious force can be derived from the acceleration of the non-inertial frame. [6] As stated by Goodman and Warner, "One might say that F = ma holds in any coordinate system provided the term 'force' is redefined to include the so-called 'reversed effective forces' or 'inertia forces'." [7]
In classical mechanics, centrifugal force is an outward force associated with rotation.Centrifugal force is one of several so-called pseudo-forces (also known as inertial forces), so named because, unlike real forces, they do not originate in interactions with other bodies situated in the environment of the particle upon which they act.
In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.
The centrifugal force—per unit of mass, i.e., acceleration—is given by = ... It can be shown that this pseudo-force field, in a reference frame co-rotating with ...