Search results
Results From The WOW.Com Content Network
Pure mathematics studies the properties and structure of abstract objects, [1] such as the E8 group, in group theory. This may be done without focusing on concrete applications of the concepts in the physical world. Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may ...
Euler's identity is a special case of Euler's formula, which the physicist Richard Feynman called "our jewel" and "the most remarkable formula in mathematics". [7] Modern examples include the modularity theorem, which establishes an important connection between elliptic curves and modular forms (work on which led to the awarding of the Wolf ...
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions.German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."
The Riemann Hypothesis. Today’s mathematicians would probably agree that the Riemann Hypothesis is the most significant open problem in all of math. It’s one of the seven Millennium Prize ...
Reality: The question is whether mathematics is a pure product of human mind or whether it has some reality by itself. Logic and rigor; Relationship with physical reality; Relationship with science; Relationship with applications; Mathematical truth; Nature as human activity (science, art, game, or all together)
The branch of mathematics deals with the properties and relationships of numbers, especially positive integers. Number theory is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss said, "Mathematics is the queen of the sciences—and number theory ...
The expression "statistical proof" may be used technically or colloquially in areas of pure mathematics, such as involving cryptography, chaotic series, and probabilistic number theory or analytic number theory. [23] [24] [25] It is less commonly used to refer to a mathematical proof in the branch of mathematics known as mathematical statistics.
It is in this essay that the term 'potential function' first occurs. Herein also his remarkable theorem in pure mathematics, since universally known as Green's theorem, and probably the most important instrument of investigation in the whole range of mathematical physics, made its appearance. We are all now able to understand, in a general way ...