Search results
Results From The WOW.Com Content Network
The ferric chloride test is used to determine the presence of phenols in a given sample or compound (for instance natural phenols in a plant extract). Enols , hydroxamic acids , oximes, and sulfinic acids give positive results as well. [ 1 ]
Ferric chloride (FeCl 3) test is also a colorimetric assay. Lamaison and Carnet have designed a test for the determination of the total flavonoid content of a sample (AlCI 3 method). After proper mixing of the sample and the reagent, the mixture is incubated for 10 minutes at ambient temperature and the absorbance of the solution is read at 440 nm.
In chemistry, iron(III) or ferric refers to the element iron in its +3 oxidation state. Ferric chloride is an alternative name for iron(III) chloride (FeCl 3). The adjective ferrous is used instead for iron(II) salts, containing the cation Fe 2+. The word ferric is derived from the Latin word ferrum, meaning "iron".
The Folin–Ciocâlteu reagent (FCR) or Folin's phenol reagent or Folin–Denis reagent, is a mixture of phosphomolybdate and phosphotungstate used for the colorimetric in vitro assay of phenolic and polyphenolic antioxidants, also called the gallic acid equivalence method (GAE). [1] It is named after Otto Folin, Vintilă Ciocâlteu, and Willey ...
Dilute solutions of ferric chloride produce soluble nanoparticles with molecular weight of 10 4, which exhibit the property of "aging", i.e., the structure change or evolve over the course of days. [13] The polymeric species formed by the hydrolysis of ferric chlorides are key to the use of ferric chloride for water treatment.
The following describes the use of ferric chloride (FeCl3) tests for phenolics in general: Powdered plant leaves of the test plant (1.0 g) are weighed into a beaker and 10 ml of distilled water are added. The mixture is boiled for five minutes.
Iron reacts with fluorine, chlorine, and bromine to give the corresponding ferric halides, ferric chloride being the most common. [13] 2 Fe + 3 X 2 → 2 FeX 3 (X = F, Cl, Br) Ferric iodide is an exception, being thermodynamically unstable due to the oxidizing power of Fe 3+ and the high reducing power of I −: [13] 2 I − + 2 Fe 3+ → I 2 ...
Samples and phenolic standards are given acidic ferric chloride and ferricyanide, which is reduced to ferrocyanide by the phenols. The ferric chloride and ferrocyanide react to form Prussian blue. Comparing the absorbance at 700 nm of the samples to the standards allows for the determination of total phenols or polyphenols. [53] [54]