Search results
Results From The WOW.Com Content Network
Einstein notation. In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity.
Numerical relativity. Numerical relativity is the sub-field of general relativity which seeks to solve Einstein's equations through the use of numerical methods. Finite difference, finite element and pseudo-spectral methods are used to approximate the solution to the partial differential equations which arise.
v. t. e. The mathematics of general relativity is complicated. In Newton 's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time ...
e. The theory of special relativity plays an important role in the modern theory of classical electromagnetism. It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. It sheds light on the relationship between ...
Definition. The Einstein tensor is a tensor of order 2 defined over pseudo-Riemannian manifolds. In index-free notation it is defined as. where is the Ricci tensor, is the metric tensor and is the scalar curvature, which is computed as the trace of the Ricci Tensor by . In component form, the previous equation reads as.
In Einstein notation (implicit summation over repeated index), contravariant components are denoted with upper indices as in = A covector or cotangent vector has components that co-vary with a change of basis in the corresponding (initial) vector space. That is, the components must be transformed by the same matrix as the change of basis matrix ...
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.
Einstein notation is used throughout this article. This article uses the "analyst's" sign convention for Laplacians, except when noted otherwise. This article uses the "analyst's" sign convention for Laplacians, except when noted otherwise.