When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reversible process (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Reversible_process...

    Nevertheless, the Carnot cycle demonstrates that the state of the surroundings may change in a reversible process as the system returns to its initial state. Reversible processes define the boundaries of how efficient heat engines can be in thermodynamics and engineering: a reversible process is one where the machine has maximum efficiency (see ...

  3. Carnot cycle - Wikipedia

    en.wikipedia.org/wiki/Carnot_cycle

    A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynamic engine during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference through ...

  4. Heat pump and refrigeration cycle - Wikipedia

    en.wikipedia.org/wiki/Heat_pump_and...

    The Carnot cycle, which has a quantum equivalent, [11] is reversible so the four processes that comprise it, two isothermal and two isentropic, can also be reversed. When a Carnot cycle runs in reverse, it is called a reverse Carnot cycle. A refrigerator or heat pump that acts according to the reversed Carnot cycle is called a Carnot ...

  5. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    The Carnot cycle is a cycle composed of the totally reversible processes of isentropic compression and expansion and isothermal heat addition and rejection. The thermal efficiency of a Carnot cycle depends only on the absolute temperatures of the two reservoirs in which heat transfer takes place, and for a power cycle is:

  6. Carnot heat engine - Wikipedia

    en.wikipedia.org/wiki/Carnot_heat_engine

    A Carnot heat engine [2] is a theoretical heat engine that operates on the Carnot cycle. The basic model for this engine was developed by Nicolas Léonard Sadi Carnot in 1824. The Carnot engine model was graphically expanded by Benoît Paul Émile Clapeyron in 1834 and mathematically explored by Rudolf Clausius in 1857, work that led to the ...

  7. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    In modern terms, Carnot's principle may be stated more precisely: The efficiency of a quasi-static or reversible Carnot cycle depends only on the temperatures of the two heat reservoirs, and is the same, whatever the working substance. A Carnot engine operated in this way is the most efficient possible heat engine using those two temperatures.

  8. Thermal efficiency - Wikipedia

    en.wikipedia.org/wiki/Thermal_efficiency

    The Carnot cycle is reversible and thus represents the upper limit on efficiency of an engine cycle. Practical engine cycles are irreversible and thus have inherently lower efficiency than the Carnot efficiency when operated between the same temperatures T H {\\displaystyle T_{\\rm {H}}} and T C {\\displaystyle T_{\\rm {C}}} .

  9. Stirling cycle - Wikipedia

    en.wikipedia.org/wiki/Stirling_cycle

    The cycle is reversible, meaning that if supplied with mechanical power, it can function as a heat pump for heating or cooling, and even for cryogenic cooling. The cycle is defined as a closed regenerative cycle with a gaseous working fluid. "Closed cycle" means the working fluid is permanently contained within the thermodynamic system.