When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    The ratio of the areas of each pair of adjacent triangles is the same as that between the lengths of the parallel sides. [15] Let the trapezoid have vertices A, B, C, and D in sequence and have parallel sides AB and DC. Let E be the intersection of the diagonals, and let F be on side DA and G be on side BC such that FEG is parallel to AB and CD.

  3. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...

  4. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    However, parallel (non-crossing) pairs of lines are less restricted in hyperbolic line arrangements than in the Euclidean plane: in particular, the relation of being parallel is an equivalence relation for Euclidean lines but not for hyperbolic lines. [51] The intersection graph of the lines in a hyperbolic arrangement can be an arbitrary ...

  5. List of two-dimensional geometric shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_two-dimensional...

    Star of David (example) Heptagram – star polygon with 7 sides; Octagram – star polygon with 8 sides Star of Lakshmi (example) Enneagram - star polygon with 9 sides; Decagram - star polygon with 10 sides; Hendecagram - star polygon with 11 sides; Dodecagram - star polygon with 12 sides; Apeirogon - generalized polygon with countably infinite ...

  6. Two-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_space

    Euclidean space has parallel lines which extend infinitely while remaining equidistant. In non-Euclidean spaces, lines perpendicular to a traversal either converge or diverge. A two-dimensional space is a mathematical space with two dimensions , meaning points have two degrees of freedom : their locations can be locally described with two ...

  7. Convex curve - Wikipedia

    en.wikipedia.org/wiki/Convex_curve

    It is an example of a hedgehog, a type of curve determined as the envelope of a system of lines with a continuous support function. The hedgehogs also include non-convex curves, such as the astroid , and even self-crossing curves, but the smooth strictly convex curves are the only hedgehogs that have no singular points.

  8. Affine plane (incidence geometry) - Wikipedia

    en.wikipedia.org/wiki/Affine_plane_(incidence...

    This consists of n 2 points and nk lines such that: Parallelism (as defined in affine planes) is an equivalence relation on the set of lines. Every line has exactly n points, and every parallel class has n lines (so each parallel class of lines partitions the point set). There are k parallel classes of lines.

  9. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.