Search results
Results From The WOW.Com Content Network
Blood resistance varies depending on blood viscosity and its plugged flow (or sheath flow since they are complementary across the vessel section) size as well, and on the size of the vessels. Assuming steady, laminar flow in the vessel, the blood vessels behavior is similar to that of a pipe.
In fluids with relatively low viscosity there is an almost linear, inverse relationship between temperature and surface tension. [13] The decrease in surface tension increases the wettability of the capillary walls, making it easier for the fluid to flow through the capillary. Heat also effects the viscosity of a fluid inside a capillary.
Blood viscosity is a measure of the resistance of blood to flow. It can also be described as the thickness and stickiness of blood. This biophysical property makes it a critical determinant of friction against the vessel walls, the rate of venous return, the work required for the heart to pump blood, and how much oxygen is transported to tissues and organs.
Most vessels of the microcirculation are lined by flattened cells of the endothelium and many of them are surrounded by contractile cells called pericytes.The endothelium provides a smooth surface for the flow of blood and regulates the movement of water and dissolved materials in the interstitial plasma between the blood and the tissues.
Differences in vascular permeability between normal tissue and a tumor. Vascular permeability, often in the form of capillary permeability or microvascular permeability, characterizes the capacity of a blood vessel wall to allow for the flow of small molecules (drugs, nutrients, water, ions) or even whole cells (lymphocytes on their way to the site of inflammation) in and out of the vessel.
The Fåhræus–Lindqvist effect (/ f ɑː ˈ r eɪ. ə s ˈ l ɪ n d k v ɪ s t /) or sigma effect [1] describes how the viscosity of blood changes with the diameter of the vessel it travels through. In particular there is a decrease in viscosity as the vessel diameter decreases, but only at small diameters of 10–300 micrometers (mainly ...
His hypothesis establishes that for fluids of low viscosity, shear forces due to viscosity are evident only in thin regions at the boundary of the fluid, adjacent to solid surfaces. Outside these regions, and in regions of favorable pressure gradient, viscous shear forces are absent so the fluid flow field can be assumed to be the same as the ...
In tissues, physiological disruption can arise with decreased oncotic pressure, which can be determined using blood tests for protein concentration. Decreased colloidal osmotic pressure, most notably seen in hypoalbuminemia, can cause edema and decrease in blood volume as fluid is not reabsorbed into the bloodstream. Colloid pressure in these ...