Search results
Results From The WOW.Com Content Network
In the theory of computation, a branch of theoretical computer science, a pushdown automaton (PDA) is a type of automaton that employs a stack. Pushdown automata are used in theories about what can be computed by machines. They are more capable than finite-state machines but less capable than Turing machines (see below).
Automata theory is the study of abstract machines and automata, as well as the computational problems that can be solved using them. It is a theory in theoretical computer science with close connections to mathematical logic .
Symbols lower in the stack are not visible and have no immediate effect. Machine actions include pushing, popping, or replacing the stack top. A deterministic pushdown automaton has at most one legal transition for the same combination of input symbol, state, and top stack symbol. This is where it differs from the nondeterministic pushdown ...
Download as PDF; Printable version; From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Pushdown automaton; Retrieved from " ...
Push-down automaton. Add languages. Add links. Article; Talk; ... Download QR code; Print/export Download as PDF; Printable version; In other projects
An embedded pushdown automaton or EPDA is a computational model for parsing languages generated by tree-adjoining grammars (TAGs). It is similar to the context-free grammar-parsing pushdown automaton, but instead of using a plain stack to store symbols, it has a stack of iterated stacks that store symbols, giving TAGs a generative capacity between context-free and context-sensitive grammars ...
Nested words over the alphabet = {,, …,} can be encoded into "ordinary" words over the tagged alphabet ^, in which each symbol a from Σ has three tagged counterparts: the symbol a for encoding a call position in a nested word labelled with a, the symbol a for encoding a return position labelled with a, and finally the symbol a itself for representing an internal position labelled with a.
The halting problem for a register machine: a finite-state automaton with no inputs and two counters that can be incremented, decremented, and tested for zero. Universality of a nondeterministic pushdown automaton: determining whether all words are accepted. The problem whether a tag system halts.