Search results
Results From The WOW.Com Content Network
Euclidean vectors such as (2, 3, 4) or (a x, a y, a z) can be rewritten as 2 i + 3 j + 4 k or a x i + a y j + a z k, where i, j, k are unit vectors representing the three Cartesian axes (traditionally x, y, z), and also obey the multiplication rules of the fundamental quaternion units by interpreting the Euclidean vector (a x, a y, a z) as the ...
For two elements a 1 + b 1 i + c 1 j + d 1 k and a 2 + b 2 i + c 2 j + d 2 k, their product, called the Hamilton product (a 1 + b 1 i + c 1 j + d 1 k) (a 2 + b 2 i + c 2 j + d 2 k), is determined by the products of the basis elements and the distributive law. The distributive law makes it possible to expand the product so that it is a sum of ...
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
and demand x 2 + y 2 + z 2 = 1 / 4 to find s = ... (x,y,z) is a unit magnitude vector. Since u is in the null space of A, if one now rotates to a new basis, ...
The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...
Given two points x = (x 1, x 2, x 3), y = (y 1, y 2, y 3) their displacement is a vector = + + (). which specifies the position of y relative to x. The length of this vector gives the straight-line distance from x to y .
In mathematics, the magnitude or size of a mathematical object is a property which determines whether the object is larger or smaller than other objects of the same kind. More formally, an object's magnitude is the displayed result of an ordering (or ranking) of the class of objects to which it belongs.
The notations (î, ĵ, k̂), (x̂ 1, x̂ 2, x̂ 3), (ê x, ê y, ê z), or (ê 1, ê 2, ê 3), with or without hat, are also used, [1] particularly in contexts where i, j, k might lead to confusion with another quantity (for instance with index symbols such as i, j, k, which are used to identify an element of a set or array or sequence of ...