Ad
related to: what is hyperintensities in brain cells pictures and symptoms
Search results
Results From The WOW.Com Content Network
Hyperintensities are commonly divided into 3 types depending on the region of the brain where they are found. Deep white matter hyperintensities occur deep within white matter, periventricular white matter hyperintensities occur adjacent to the lateral ventricles and subcortical hyperintensities occur in the basal ganglia. [citation needed]
The diagnosis is typically made with magnetic resonance imaging of the brain. The findings most characteristic for PRES are symmetrical hyperintensities on T 2-weighed imaging in the parietal and occipital lobes; this pattern is present in more than half of all cases. [1] [3] FLAIR sequences can be better at showing these abnormalities. [4]
White matter hyperintensities can be caused by a variety of factors, including ischemia, micro-hemorrhages, gliosis, damage to small blood vessel walls, breaches of the barrier between the cerebrospinal fluid and the brain, or loss and deformation of the myelin sheath.
Symptoms include sudden increase in blood pressure, acute confusional state, headaches, vomiting, and seizure. Retinal hemorrhages and hard exudates may be present on funduscopic exam. Hypertensive leukoencephalopathy may have concurrent cardiac ischemia and hematuria.
Central pontine myelinolysis is a neurological condition involving severe damage to the myelin sheath of nerve cells in the pons (an area of the brainstem). It is predominately iatrogenic (treatment-induced), and is characterized by acute paralysis, dysphagia (difficulty swallowing), dysarthria (difficulty speaking), and other neurological symptoms.
Encephalitis is inflammation of the brain. [5] The severity can be variable with symptoms including reduction or alteration in consciousness, aphasia, headache, fever, confusion, a stiff neck, and vomiting. [1] [6] Complications may include seizures, hallucinations, trouble speaking, memory problems, and problems with hearing. [1]
The real reasons behind this behavior are unknown since the cells are in the brain and have been rarely studied. However, there is a theory which is generally accepted by most experts in the field. The main characteristic of these cells is the fact that they synthesize a lot of proteins.
High levels of intracellular Ca 2+, the major cause of post-injury cell damage, [30] destroy mitochondria, [11] and trigger phospholipases and proteolytic enzymes that damage Na+ channels and degrade or alter the cytoskeleton and the axoplasm. [31] [26] Excess Ca 2+ can also lead to damage to the blood–brain barrier and swelling of the brain ...