Search results
Results From The WOW.Com Content Network
Example Bjerrum plot: Change in carbonate system of seawater from ocean acidification.. A Bjerrum plot (named after Niels Bjerrum), sometimes also known as a Sillén diagram (after Lars Gunnar Sillén), or a Hägg diagram (after Gunnar Hägg) [1] is a graph of the concentrations of the different species of a polyprotic acid in a solution, as a function of pH, [2] when the solution is at ...
This process is known as thermohaline circulation. In the Earth's polar regions ocean water gets very cold, forming sea ice. As a consequence the surrounding seawater gets saltier, because when sea ice forms, the salt is left behind. As the seawater gets saltier, its density increases, and it starts to sink.
The decreasing saturation of seawater with respect to calcium carbonate, associated with ocean acidification, a result of increased carbon dioxide (CO 2) absorption by the oceans, poses a significant threat to marine calcifiers. As CO 2 concentrations in seawater rise, a decrease in pH and a reduction in carbonate ion concentrations in seawater ...
The balance of these carbonate species (which ultimately affects the solubility of carbon dioxide), is dependent on factors such as pH, as shown in a Bjerrum plot.In seawater this is regulated by the charge balance of a number of positive (e.g. Na +, K +, Mg 2+, Ca 2+) and negative (e.g. CO 3 2− itself, Cl −, SO 4 2−, Br −) ions.
Relationship of phosphate to nitrate uptake for photosynthesis in various regions of the ocean. Note that nitrate is more often limiting than phosphate. The Redfield ratio or Redfield stoichiometry is the consistent atomic ratio of carbon, nitrogen and phosphorus found in marine phytoplankton and throughout the deep oceans.
A change in pH by 0.1 represents a 26% increase in hydrogen ion concentration in the world's oceans (the pH scale is logarithmic, so a change of one in pH units is equivalent to a tenfold change in hydrogen ion concentration). Sea-surface pH and carbonate saturation states vary depending on ocean depth and location.
The average density at the surface is 1.025 kg/L. Seawater is denser than both fresh water and pure water (density 1.0 kg/L at 4 °C (39 °F)) because the dissolved salts increase the mass by a larger proportion than the volume. The freezing point of seawater decreases as salt concentration increases.
[105] [106] The phosphate sorbent is commonly applied in the surface of the water body and it sinks to the bottom of the lake reducing phosphate, such sorbents have been applied worldwide to manage eutrophication and algal bloom (for example under the commercial name Phoslock).