When.com Web Search

  1. Ad

    related to: what is platonic polyhedron definition science

Search results

  1. Results From The WOW.Com Content Network
  2. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra:

  3. List of Johnson solids - Wikipedia

    en.wikipedia.org/wiki/List_of_Johnson_solids

    A convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid [3]. Some authors exclude uniform polyhedra from the definition. A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal ; examples include Platonic and Archimedean solids as well as ...

  4. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...

  5. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    In geometry, a polyhedron (pl.: polyhedra or polyhedrons; from Greek πολύ (poly-) 'many' and ἕδρον (-hedron) 'base, seat') is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is a polyhedron that bounds a convex set.

  6. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    This equation, stated by Euler in 1758, [3] is known as Euler's polyhedron formula. [4] It corresponds to the Euler characteristic of the sphere (i.e. = ), and applies identically to spherical polyhedra. An illustration of the formula on all Platonic polyhedra is given below.

  7. Space-filling polyhedron - Wikipedia

    en.wikipedia.org/wiki/Space-filling_polyhedron

    The cube is the only Platonic solid that can fill space, although a tiling that combines tetrahedra and octahedra (the tetrahedral-octahedral honeycomb) is possible. Although the regular tetrahedron cannot fill space, other tetrahedra can, including the Goursat tetrahedra derived from the cube, and the Hill tetrahedra.

  8. David Lynch Was Proud of All of His Projects Except This One ...

    www.aol.com/david-lynch-proud-projects-except...

    Related: Kyle MacLachlan Mourns David Lynch: 'I Owe My Entire Career, and Life Really, to His Vision' Still, the cast of Dune remembered Lynch fondly, honoring him with tributes after news of his ...

  9. Polyhedral graph - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_graph

    A polyhedral graph is the graph of a simple polyhedron if it is cubic (every vertex has three edges), and it is the graph of a simplicial polyhedron if it is a maximal planar graph. For example, the tetrahedral, cubical, and dodecahedral graphs are simple; the tetrahedral, octahedral, and icosahedral graphs are simplicial.