Search results
Results From The WOW.Com Content Network
This reduces the chi-squared value obtained and thus increases its p-value. The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = =
Because the square of a standard normal distribution is the chi-squared distribution with one degree of freedom, the probability of a result such as 1 heads in 10 trials can be approximated either by using the normal distribution directly, or the chi-squared distribution for the normalised, squared difference between observed and expected value.
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
For the test of independence, also known as the test of homogeneity, a chi-squared probability of less than or equal to 0.05 (or the chi-squared statistic being at or larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis that the row variable is independent of the ...
It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying a chi-squared distribution.
From this representation, the noncentral chi-squared distribution is seen to be a Poisson-weighted mixture of central chi-squared distributions. Suppose that a random variable J has a Poisson distribution with mean λ / 2 {\displaystyle \lambda /2} , and the conditional distribution of Z given J = i is chi-squared with k + 2 i degrees of freedom.
chi-square distribution F_k(x) = \int_0^x t^(n/2-1) * exp(-t/2) / (2^(n/2) * gamma(n/2)) dt from Wikimedia Commons plot-range: 0 to 8 plotted with cubic bezier-curves the bezier-controll-points are calculated to give a very accurate result. accuracy is 0.00001 units symbols in "Computer Modern" (TeX) font embedded created with a plain text ...
where χ 2 is computed as in Pearson's chi-squared test, and N is the grand total of observations. φ varies from 0 (corresponding to no association between the variables) to 1 or −1 (complete association or complete inverse association), provided it is based on frequency data represented in 2 × 2 tables.