When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    In mathematics, the determinant is a scalar-valued function of the entries of a square matrix.The determinant of a matrix A is commonly denoted det(A), det A, or | A |.Its value characterizes some properties of the matrix and the linear map represented, on a given basis, by the matrix.

  3. Functional determinant - Wikipedia

    en.wikipedia.org/wiki/Functional_determinant

    In functional analysis, a branch of mathematics, it is sometimes possible to generalize the notion of the determinant of a square matrix of finite order (representing a linear transformation from a finite-dimensional vector space to itself) to the infinite-dimensional case of a linear operator S mapping a function space V to itself.

  4. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/.../Jacobian_matrix_and_determinant

    [a] This means that the function that maps y to f(x) + J(x) ⋅ (y – x) is the best linear approximation of f(y) for all points y close to x. The linear map h → J(x) ⋅ h is known as the derivative or the differential of f at x. When m = n, the Jacobian matrix is square, so its determinant is a well-defined function of x, known as the ...

  5. Leibniz formula for determinants - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for...

    Thus the only alternating multilinear functions with () = are restricted to the function defined by the Leibniz formula, and it in fact also has these three properties. Hence the determinant can be defined as the only function det : M n ( K ) → K {\displaystyle \det :M_{n}(\mathbb {K} )\rightarrow \mathbb {K} } with these three properties.

  6. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    Lemma 1. ′ =, where ′ is the differential of . This equation means that the differential of , evaluated at the identity matrix, is equal to the trace.The differential ′ is a linear operator that maps an n × n matrix to a real number.

  7. Template:List of statistics symbols - Wikipedia

    en.wikipedia.org/wiki/Template:List_of...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  8. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:

  9. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The determinant of the Hessian matrix, when evaluated at a critical point of a function, is equal to the Gaussian curvature of the function considered as a manifold. The eigenvalues of the Hessian at that point are the principal curvatures of the function, and the eigenvectors are the principal directions of curvature.