Ads
related to: 50 times table chart
Search results
Results From The WOW.Com Content Network
In 493 AD, Victorius of Aquitaine wrote a 98-column multiplication table which gave (in Roman numerals) the product of every number from 2 to 50 times and the rows were "a list of numbers starting with one thousand, descending by hundreds to one hundred, then descending by tens to ten, then by ones to one, and then the fractions down to 1/144." [6]
However, it consists purely or largely of information which is better suited to representation in wikitext (possibly using MediaWiki's special syntax for tables, math, or music). This will make the information easier to edit, as well as make it accessible to users of screen readers and text-based browsers.
In 493 AD, Victorius of Aquitaine wrote a 98-column multiplication table which gave (in Roman numerals) the product of every number from 2 to 50 times and the rows were "a list of numbers starting with one thousand, descending by hundreds to one hundred, then descending by tens to ten, then by ones to one, and then the fractions down to 1/144 ...
36 represented in chisanbop, where four fingers and a thumb are touching the table and the rest of the digits are raised. The three fingers on the left hand represent 10+10+10 = 30; the thumb and one finger on the right hand represent 5+1=6. Counting from 1 to 20 in Chisanbop. Each finger has a value of one, while the thumb has a value of five.
These tables consisted of a list of the first twenty multiples of a certain principal number n: n, 2n, ..., 20n; followed by the multiples of 10n: 30n 40n, and 50n. Then to compute any sexagesimal product, say 53 n , one only needed to add 50 n and 3 n computed from the table.
The group {1, −1} above and the cyclic group of order 3 under ordinary multiplication are both examples of abelian groups, and inspection of the symmetry of their Cayley tables verifies this. In contrast, the smallest non-abelian group, the dihedral group of order 6, does not have a symmetric Cayley table.