Search results
Results From The WOW.Com Content Network
Each cell membrane can have several kinds of membrane receptors, with varying surface distributions. A single receptor may also be differently distributed at different membrane positions, depending on the sort of membrane and cellular function. Receptors are often clustered on the membrane surface, rather than evenly distributed. [5] [6]
Receptor proteins can be classified by their location. Cell surface receptors, also known as transmembrane receptors, include ligand-gated ion channels, G protein-coupled receptors, and enzyme-linked hormone receptors. [1] Intracellular receptors are those found inside the cell, and include cytoplasmic receptors and nuclear receptors. [1]
Signaling molecules binding surface receptors are generally large and hydrophilic (e.g. TRH, Vasopressin, Acetylcholine), while those entering the cell are generally small and hydrophobic (e.g. glucocorticoids, thyroid hormones, cholecalciferol, retinoic acid), but important exceptions to both are numerous, and the same molecule can act both ...
Integrins are transmembrane receptors that help cell–cell and cell–extracellular matrix (ECM) adhesion. [3] Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, organization of the intracellular cytoskeleton, and movement of new receptors to the cell membrane. [4]
The N-methyl-D-aspartate receptor (NMDA receptor) – a type of ionotropic glutamate receptor – is a ligand-gated ion channel that is gated by the simultaneous binding of glutamate and a co-agonist (i.e., either D-serine or glycine). [11] Studies show that the NMDA receptor is involved in regulating synaptic plasticity and memory. [12] [13]
Receptor tyrosine kinases (RTKs) are the high-affinity cell surface receptors for many polypeptide growth factors, cytokines, and hormones. Of the 90 unique tyrosine kinase genes identified in the human genome , 58 encode receptor tyrosine kinase proteins. [ 1 ]
Scavenger receptors are a large and diverse superfamily of cell surface receptors.Its properties were first recorded in 1970 by Drs. Brown and Goldstein, with the defining property being the ability to bind and remove modified low density lipoproteins (LDL). [1]
The alpha subunit, now free to move along the inner membrane, eventually contacts another cell surface receptor - the "primary effector." [citation needed] The primary effector then has an action, which creates a signal that can diffuse within the cell. This signal is called the "second (or secondary) messenger."