Search results
Results From The WOW.Com Content Network
In asymptotic theory, the standard approach is n → ∞. For some statistical models, slightly different approaches of asymptotics may be used. For example, with panel data, it is commonly assumed that one dimension in the data remains fixed, whereas the other dimension grows: T = constant and N → ∞, or vice versa. [2]
In statistics, the delta method is a method of deriving the asymptotic distribution of a random variable. It is applicable when the random variable being considered can be defined as a differentiable function of a random variable which is asymptotically Gaussian .
Asymptotic theory does not provide a method of evaluating the finite-sample distributions of sample statistics, however. Non-asymptotic bounds are provided by methods of approximation theory. Examples of applications are the following. In applied mathematics, asymptotic analysis is used to build numerical methods to approximate equation solutions.
In mathematics and statistics, an asymptotic distribution is a probability distribution that is in a sense the "limiting" distribution of a sequence of distributions. One of the main uses of the idea of an asymptotic distribution is in providing approximations to the cumulative distribution functions of statistical estimators.
Formally, it is the variance of the score, or the expected value of the observed information. The role of the Fisher information in the asymptotic theory of maximum-likelihood estimation was emphasized and explored by the statistician Sir Ronald Fisher (following some initial results by Francis Ysidro Edgeworth).
Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.
In this formulation V/n can be called the asymptotic variance of the estimator. However, some authors also call V the asymptotic variance. Note that convergence will not necessarily have occurred for any finite "n", therefore this value is only an approximation to the true variance of the estimator, while in the limit the asymptotic variance (V ...
Mathematical Statistics. New York: Springer. ISBN 0-387-98674-X.. Section 3.1.3. Posterior uncertainty, asymptotic law and Cramér-Rao bound, Structural Control and Health Monitoring 25(1851):e2113 DOI: 10.1002/stc.2113