When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  4. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    For rod length 6" and crank radius 2" (as shown in the example graph below), numerically solving the acceleration zero-crossings finds the velocity maxima/minima to be at crank angles of ±73.17615°. Then, using the triangle law of sines, it is found that the rod-vertical angle is 18.60647° and the crank-rod angle is 88.21738°. Clearly, in ...

  5. Torricelli's equation - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_equation

    In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Consequently, the acceleration is the second derivative of position, [7] often written . Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. [9]: 1 Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to ...

  8. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    [4] [5] [6] A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined.

  9. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    In this case, the three-acceleration vector is perpendicular to the three-velocity vector, = and the square of proper acceleration, expressed as a scalar invariant, the same in all reference frames, = + (), becomes the expression for circular motion, =. or, taking the positive square root and using the three-acceleration, we arrive at the ...