Search results
Results From The WOW.Com Content Network
In electronics, the Zener effect (employed most notably in the appropriately named Zener diode) is a type of electrical breakdown, discovered by Clarence Melvin Zener. It occurs in a reverse biased p-n diode when the electric field enables tunneling of electrons from the valence to the conduction band of a semiconductor , leading to numerous ...
A Zener diode is a special type of diode designed to reliably allow current to flow "backwards" (inverted polarity) when a certain set reverse voltage, known as the Zener voltage, is reached. Zener diodes are manufactured with a great variety of Zener voltages and some are even variable.
Thus, as long as the Zener current (I Z) is above a certain level (called holding current), the voltage across the Zener diode (V Z) will be constant. Resistor, R1, supplies the Zener current and the base current (I B) of NPN transistor (Q1). The constant Zener voltage is applied across the base of Q1 and emitter resistor, R2.
The characteristic curve (curved line), representing the current I through the diode for any given voltage across the diode V D, is an exponential curve. The load line (diagonal line), representing the relationship between current and voltage due to Kirchhoff's voltage law applied to the resistor and voltage source, is
The LTZ1000 is a high-precision, ultra-stable Zener diode voltage reference originally developed by Carl Nelson for Linear Technology (now Analog Devices). It consists of a Zener reference packaged along with an integrated heater and temperature sensor designed to hold the device at a constant temperature for improved stability. [1] [2]
Infrared diode: often changed to "D" for diode J: Jack (least-movable connector of a connector pair), jack connector (connector may have "male" pin contacts and/or "female" socket contacts) all types of connectors, including pin headers. JP: Jumper (link) K: Relay or contactor: L: Inductor or coil or ferrite bead: LD, LED: LED: often changed to ...
Here, the load current I R2 is supplied by the transistor whose base is now connected to the Zener diode. Thus the transistor's base current (I B) forms the load current for the Zener diode and is much smaller than the current through R 2. This regulator is classified as "series" because the regulating element, viz., the transistor, appears in ...
Zener diode based noise source. A noise generator is a circuit that produces electrical noise (i.e., a random signal). Noise generators are used to test signals for measuring noise figure, frequency response, and other parameters.