Ad
related to: basic integral formulas calculator calculus
Search results
Results From The WOW.Com Content Network
Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
A line integral (sometimes called a path integral) is an integral where the function to be integrated is evaluated along a curve. [42] Various different line integrals are in use. In the case of a closed curve it is also called a contour integral. The function to be integrated may be a scalar field or a vector field.
Intuitively, the fundamental theorem states that integration and differentiation are inverse operations which reverse each other. The second fundamental theorem says that the sum of infinitesimal changes in a quantity (the integral of the derivative of the quantity) adds up to the net change in the quantity. To visualize this, imagine traveling ...
Integral calculus is the study of the definitions, properties, and applications of two related concepts, the indefinite integral and the definite integral. The process of finding the value of an integral is called integration. [47]: 508 The indefinite integral, also known as the antiderivative, is the inverse operation to the derivative.
These reduction formulas can be used for integrands having integer and/or fractional exponents. Special cases of these reductions formulas can be used for integrands of the form ( a + b x n + c x 2 n ) p {\displaystyle \left(a+b\,x^{n}+c\,x^{2n}\right)^{p}} when b 2 − 4 a c = 0 {\displaystyle b^{2}-4\,a\,c=0} by setting m to 0.
The fundamental theorem of calculus establishes the relationship between indefinite and definite integrals and introduces a technique for evaluating definite integrals. If the interval is infinite the definite integral is called an improper integral and defined by using appropriate limiting procedures. for example:
Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]
The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals.