Ads
related to: how do you divide and multiply fractions example
Search results
Results From The WOW.Com Content Network
To divide a fraction by a whole number, you may either divide the numerator by the number, if it goes evenly into the numerator, or multiply the denominator by the number. For example, 10 3 ÷ 5 {\displaystyle {\tfrac {10}{3}}\div 5} equals 2 3 {\displaystyle {\tfrac {2}{3}}} and also equals 10 3 ⋅ 5 = 10 15 {\displaystyle {\tfrac {10}{3\cdot ...
For example, measuring the length of a table using a measuring tape involves comparing the table to the markings on the tape. This is conceptually equivalent to dividing the length of the table by a unit of length, the distance between markings.
In the example, 20 is the dividend, 5 is the divisor, and 4 is the quotient. Unlike the other basic operations, when dividing natural numbers there is sometimes a remainder that will not go evenly into the dividend; for example, 10 / 3 leaves a remainder of 1, as 10 is not a multiple of 3.
In academic literature, when inline fractions are combined with implied multiplication without explicit parentheses, the multiplication is conventionally interpreted as having higher precedence than division, so that e.g. 1 / 2n is interpreted to mean 1 / (2 · n) rather than (1 / 2) · n.
Slices of approximately 1/8 of a pizza. A unit fraction is a positive fraction with one as its numerator, 1/ n.It is the multiplicative inverse (reciprocal) of the denominator of the fraction, which must be a positive natural number.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
For example, multiplying the lengths (in meters or feet) of the two sides of a rectangle gives its area (in square meters or square feet). Such a product is the subject of dimensional analysis. The inverse operation of multiplication is division. For example, since 4 multiplied by 3 equals 12, 12 divided by 3 equals 4.
We can reduce the fractions to lowest terms by noting that the two occurrences of b on the left-hand side cancel, as do the two occurrences of d on the right-hand side, leaving =, and we can divide both sides of the equation by any of the elements—in this case we will use d —getting =.