When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Moment of inertia factor - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia_factor

    The Sun has by far the lowest moment of inertia factor value among Solar System bodies; it has by far the highest central density (162 g/cm 3, [3] [note 3] compared to ~13 for Earth [4] [5]) and a relatively low average density (1.41 g/cm 3 versus 5.5 for Earth).

  3. Solar System - Wikipedia

    en.wikipedia.org/wiki/Solar_System

    The Solar System remains in a relatively stable, slowly evolving state by following isolated, gravitationally bound orbits around the Sun. [28] Although the Solar System has been fairly stable for billions of years, it is technically chaotic, and may eventually be disrupted. There is a small chance that another star will pass through the Solar ...

  4. Precession - Wikipedia

    en.wikipedia.org/wiki/Precession

    The torque-free precession rate of an object with an axis of symmetry, such as a disk, spinning about an axis not aligned with that axis of symmetry can be calculated as follows: [1] = ⁡ where ω p is the precession rate, ω s is the spin rate about the axis of symmetry, I s is the moment of inertia about the axis of symmetry, I p is moment ...

  5. Planetary core - Wikipedia

    en.wikipedia.org/wiki/Planetary_core

    The structure of rocky planets is constrained by the average density of a planet and its moment of inertia. [15] The moment of inertia for a differentiated planet is less than 0.4, because the density of the planet is concentrated in the center. [16] Mercury has a moment of inertia of 0.346, which is evidence for a core. [17]

  6. Astronomical nutation - Wikipedia

    en.wikipedia.org/wiki/Astronomical_nutation

    Precession is the effect of these forces averaged over a very long period of time, and a time-varying moment of inertia (If an object is asymmetric about its principal axis of rotation, the moment of inertia with respect to each coordinate direction will change with time, while preserving angular momentum), and has a timescale of about 26,000 ...

  7. Axial parallelism - Wikipedia

    en.wikipedia.org/wiki/Axial_parallelism

    Axial parallelism of Saturn's rings, in a 17th century work by James Ferguson (Scottish astronomer) Axial parallelism can be seen in the Moon's tilted orbital plane.This results in the revolution of the lunar nodes relative to the Earth, causing an eclipse season approximately every six months, in which a solar eclipse can occur at the new moon phase and a lunar eclipse can occur at the full ...

  8. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics , and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [ 1 ]

  9. Stability of the Solar System - Wikipedia

    en.wikipedia.org/wiki/Stability_of_the_Solar_System

    The stability of the Solar System is a subject of much inquiry in astronomy.Though the planets have historically been stable as observed, and will be in the "short" term, their weak gravitational effects on one another can add up in ways that are not predictable by any simple means.