Search results
Results From The WOW.Com Content Network
The atoms in molecules, crystals, metals and other forms of matter are held together by chemical bonds, which determine the structure and properties of matter. All bonds can be described by quantum theory, but, in practice, simplified rules and other theories allow chemists to predict the strength, directionality, and polarity of bonds. [4]
A solid with extensive hydrogen bonding will be considered a molecular solid, yet strong hydrogen bonds can have a significant degree of covalent character. As noted above, covalent and ionic bonds form a continuum between shared and transferred electrons; covalent and weak bonds form a continuum between shared and unshared electrons.
Although the bond valence model is mostly used for validating newly determined structures, it is capable of predicting many of the properties of those chemical structures that can be described by localized bonds [3] In the bond valence model, the valence of an atom, V, is defined as the number of electrons the atom uses for bonding. This is ...
Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force between conduction electrons (in the form of an electron cloud of delocalized electrons) and positively charged metal ions. It may be described as the sharing of free electrons among a structure of positively charged ions .
According to this theory a covalent bond is formed between two atoms by the overlap of half filled valence atomic orbitals of each atom containing one unpaired electron. Valence Bond theory describes chemical bonding better than Lewis Theory, which states that atoms share or transfer electrons so that they achieve the octet rule.
The characteristics of the bond formed can be predicted by the properties of constituent atoms, namely electronegativity. They differ in the magnitude of their bond enthalpies , a measure of bond strength, and thus affect the physical and chemical properties of compounds in different ways. % of ionic character is directly proportional ...
Molecular geometries can be specified in terms of 'bond lengths', 'bond angles' and 'torsional angles'. The bond length is defined to be the average distance between the nuclei of two atoms bonded together in any given molecule. A bond angle is the angle formed between three atoms across at least two bonds.
Thus, each sulfur atom is hexavalent or has valence 6, but has oxidation state +5. In the dioxygen molecule O 2, each oxygen atom has 2 valence bonds and so is divalent (valence 2), but has oxidation state 0. In acetylene H−C≡C−H, each carbon atom has 4 valence bonds (1 single bond with hydrogen atom and a triple bond with the other ...