Search results
Results From The WOW.Com Content Network
The "two-fluid" theory of electricity, created by Charles François de Cisternay du Fay, postulated that electricity was the interaction between two electrical 'fluids.' An alternate simpler theory was proposed by Benjamin Franklin, called the unitary, or one-fluid, theory of electricity. This theory claimed that electricity was really one ...
Du Fay announced that electricity consisted of two fluids: "vitreous" (from the Latin for "glass"), or positive, electricity; and "resinous," or negative, electricity. This was the two-fluid theory of electricity, which was to be opposed by Benjamin Franklin's one-fluid theory later in the century. [4]
Electrohydrodynamics (EHD), also known as electro-fluid-dynamics (EFD) or electrokinetics, is the study of the dynamics of electrically charged fluids. [1] [2] Electrohydrodynamics (EHD) is a joint domain of electrodynamics and fluid dynamics mainly focused on the fluid motion induced by electric fields. EHD, in its simplest form, involves the ...
Charles François de Cisternay du Fay (14 September 1698 – 16 July 1739) was a French chemist and superintendent of the Jardin du Roi.. He discovered the existence of two types of electricity and named them "vitreous" and "resinous" (later known as positive and negative charge respectively).
Such experiments led to the theory of two types of electric charge, one being the negative of the other, with a simple sum respecting signs giving the total charge. The electrostatic attraction of the charged plastic pen to neutral uncharged pieces of paper (for example) is due to induced dipoles [ 36 ] : Chapter 27 in the paper.
C. F. du Fay seeing his work, developed a "two-fluid" theory of electricity. [10] In the 18th century, Benjamin Franklin conducted extensive research in electricity, selling his possessions to fund his work. In June 1752 he is reputed to have attached a metal key to the bottom of a dampened kite string and flown the kite in a storm-threatened ...
When activated an ER fluid behaves as a Bingham plastic (a type of viscoelastic material), with a yield point which is determined by the electric field strength. After the yield point is reached, the fluid shears as a fluid , i.e. the incremental shear stress is proportional to the rate of shear (in a Newtonian fluid there is no yield point and ...
The Cambridge Handbook of Physics Formulas. Cambridge University Press. ISBN 978-0-521-57507-2. A. Halpern (1988). 3000 Solved Problems in Physics, Schaum Series. Mc Graw Hill. ISBN 978-0-07-025734-4. R.G. Lerner, G.L. Trigg (2005). Encyclopaedia of Physics (2nd ed.). VHC Publishers, Hans Warlimont, Springer. pp. 12– 13. ISBN 978-0-07-025734-4.