Ad
related to: discrete log problem statement calculator
Search results
Results From The WOW.Com Content Network
Pollard's rho algorithm for logarithms is an algorithm introduced by John Pollard in 1978 to solve the discrete logarithm problem, analogous to Pollard's rho algorithm to solve the integer factorization problem.
For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.
In computational number theory and computational algebra, Pollard's kangaroo algorithm (also Pollard's lambda algorithm, see Naming below) is an algorithm for solving the discrete logarithm problem. The algorithm was introduced in 1978 by the number theorist John M. Pollard , in the same paper as his better-known Pollard's rho algorithm for ...
The discrete log problem is of fundamental importance to the area of public key cryptography. Many of the most commonly used cryptography systems are based on the assumption that the discrete log is extremely difficult to compute; the more difficult it is, the more security it provides a data transfer.
This was considered a minor step compared to the others for smaller discrete log computations. However, larger discrete logarithm records [1] [2] were made possible only by shifting the work away from the linear algebra and onto the sieve (i.e., increasing the number of equations while reducing the number of variables).
The hidden subgroup problem (HSP) is a topic of research in mathematics and theoretical computer science. The framework captures problems such as factoring , discrete logarithm , graph isomorphism , and the shortest vector problem .
Steps of the Pohlig–Hellman algorithm. In group theory, the Pohlig–Hellman algorithm, sometimes credited as the Silver–Pohlig–Hellman algorithm, [1] is a special-purpose algorithm for computing discrete logarithms in a finite abelian group whose order is a smooth integer.
The discrete logarithm algorithm and the factoring algorithm are instances of the period-finding algorithm, and all three are instances of the hidden subgroup problem. On a quantum computer, to factor an integer N {\displaystyle N} , Shor's algorithm runs in polynomial time , meaning the time taken is polynomial in log N {\displaystyle \log ...