Ads
related to: pull faces definition geometry worksheet printable
Search results
Results From The WOW.Com Content Network
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; [1] a three-dimensional solid bounded exclusively by faces is a polyhedron. A face can be finite like a polygon or circle, or infinite like a half-plane or plane.
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms f : X → Z and g : Y → Z with a common codomain.
The notion of pullback as a fiber-product ultimately leads to the very general idea of a categorical pullback, but it has important special cases: inverse image (and pullback) sheaves in algebraic geometry, and pullback bundles in algebraic topology and differential geometry. See also: Pullback (category theory) Fibred category; Inverse image sheaf
This is left blank for non-orientable polyhedra and hemipolyhedra (polyhedra with faces passing through their centers), for which the density is not well-defined. Note on Vertex figure images: The white polygon lines represent the "vertex figure" polygon. The colored faces are included on the vertex figure images help see their relations.
In mathematics, specifically in algebraic geometry, the fiber product of schemes is a fundamental construction. It has many interpretations and special cases. For example, the fiber product describes how an algebraic variety over one field determines a variety over a bigger field, or the pullback of a family of varieties, or a fiber of a family of varieties.
Any section s of E over B induces a section of f * E, called the pullback section f * s, simply by defining (′):= (′, ((′)) ) for all ′ ′.If the bundle E → B has structure group G with transition functions t ij (with respect to a family of local trivializations {(U i, φ i)}) then the pullback bundle f * E also has structure group G.