When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Double descent - Wikipedia

    en.wikipedia.org/wiki/Double_descent

    Double descent in statistics and machine learning is the phenomenon where a model with a small number of parameters and a model with an extremely large number of parameters both have a small training error, but a model whose number of parameters is about the same as the number of data points used to train the model will have a much greater test ...

  3. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    A widely used type of composition is the nonlinear weighted sum, where () = (()), where (commonly referred to as the activation function [3]) is some predefined function, such as the hyperbolic tangent, sigmoid function, softmax function, or rectifier function. The important characteristic of the activation function is that it provides a smooth ...

  4. Softplus - Wikipedia

    en.wikipedia.org/wiki/Softplus

    Plot of the softplus function and the ramp function.. In mathematics and machine learning, the softplus function is = ⁡ (+).It is a smooth approximation (in fact, an analytic function) to the ramp function, which is known as the rectifier or ReLU (rectified linear unit) in machine learning.

  5. Sample complexity - Wikipedia

    en.wikipedia.org/wiki/Sample_complexity

    This is the linear classification with offset learning problem. Now, four coplanar points in a square cannot be shattered by any affine function, since no affine function can be positive on two diagonally opposite vertices and negative on the remaining two.

  6. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    The activation function of a node in an artificial neural network is a function that calculates the output of the node based on its individual inputs and their weights. Nontrivial problems can be solved using only a few nodes if the activation function is nonlinear .

  7. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  8. Neural operators - Wikipedia

    en.wikipedia.org/wiki/Neural_operators

    Operator learning is a machine learning paradigm to learn solution operators mapping the input function to the output function. Using traditional machine learning methods, addressing this problem would involve discretizing the infinite-dimensional input and output function spaces into finite-dimensional grids and applying standard learning ...

  9. Universal approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Universal_approximation...

    In the mathematical theory of artificial neural networks, universal approximation theorems are theorems [1] [2] of the following form: Given a family of neural networks, for each function from a certain function space, there exists a sequence of neural networks ,, … from the family, such that according to some criterion.