When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Irreducible polynomial - Wikipedia

    en.wikipedia.org/wiki/Irreducible_polynomial

    In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials.The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong.

  3. Irreducibility (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Irreducibility_(mathematics)

    In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial. In representation theory, an irreducible representation is a nontrivial representation with no nontrivial proper subrepresentations. Similarly, an irreducible module is another name for a simple module.

  4. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    The number of irreducible monic polynomials of degree n over F q is the number of aperiodic necklaces, given by Moreau's necklace-counting function M q (n). The closely related necklace function N q (n) counts monic polynomials of degree n which are primary (a power of an irreducible); or alternatively irreducible polynomials of all degrees d ...

  5. Hilbert's irreducibility theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_irreducibility...

    In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert in 1892, states that every finite set of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible.

  6. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    Over GF(2), x + 1 is a primitive polynomial and all other primitive polynomials have an odd number of terms, since any polynomial mod 2 with an even number of terms is divisible by x + 1 (it has 1 as a root). An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n ...

  7. Cohn's irreducibility criterion - Wikipedia

    en.wikipedia.org/wiki/Cohn's_irreducibility...

    Cohn's irreducibility criterion is a sufficient condition for a polynomial to be irreducible in [] —that is, for it to be unfactorable into the product of lower-degree polynomials with integer coefficients.

  8. Resolvent cubic - Wikipedia

    en.wikipedia.org/wiki/Resolvent_cubic

    The resolvent cubic of an irreducible quartic polynomial P(x) can be used to determine its Galois group G; that is, the Galois group of the splitting field of P(x). Let m be the degree over k of the splitting field of the resolvent cubic (it can be either R 4 ( y ) or R 5 ( y ) ; they have the same splitting field).

  9. Resolvent (Galois theory) - Wikipedia

    en.wikipedia.org/wiki/Resolvent_(Galois_theory)

    Thus, when expanded, its coefficients are polynomials in the X i that are invariant under the action of the symmetry group and thus may be expressed as polynomials in the elementary symmetric polynomials. In other words, R G is an irreducible polynomial in Y whose coefficients are polynomial in the coefficients of F.