Search results
Results From The WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n , then so is − m . The tables below only list positive divisors.
7 is a divisor of 42 because =, so we can say It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2, 3, −3.
The purpose of the proof is not primarily to convince its readers that 22 / 7 (or 3 + 1 / 7 ) is indeed bigger than π. Systematic methods of computing the value of π exist. If one knows that π is approximately 3.14159, then it trivially follows that π < 22 / 7 , which is approximately 3.142857.
So 116 becomes now 46. Repeat the procedure, since the number is greater than 7. Now, 4 becomes 5, which must be added to 6. That is 11. Repeat the procedure one more time: 1 becomes 3, which is added to the second digit (1): 3 + 1 = 4. Now we have a number smaller than 7, and this number (4) is the remainder of dividing 186/7.
Decimal numbers are not divided directly, the dividend and divisor are multiplied by a power of ten so that the division involves two whole numbers. Therefore, if one were dividing 12,7 by 0,4 (commas being used instead of decimal points), the dividend and divisor would first be changed to 127 and 4, and then the division would proceed as above.
The first number to be divided by the divisor (4) is the partial dividend (9). One writes the integer part of the result (2) above the division bar over the leftmost digit of the dividend, and one writes the remainder (1) as a small digit above and to the right of the partial dividend (9).
In arithmetic and algebra, the seventh power of a number n is the result of multiplying seven instances of n together. So: n 7 = n × n × n × n × n × n × n.. Seventh powers are also formed by multiplying a number by its sixth power, the square of a number by its fifth power, or the cube of a number by its fourth power.