When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fiber bundle - Wikipedia

    en.wikipedia.org/wiki/Fiber_bundle

    This is called a trivial bundle. Examples of non-trivial fiber bundles include the Möbius strip and Klein bottle, as well as nontrivial covering spaces. Fiber bundles, such as the tangent bundle of a manifold and other more general vector bundles, play an important role in differential geometry and differential topology, as do principal bundles.

  3. Fiber bundle construction theorem - Wikipedia

    en.wikipedia.org/wiki/Fiber_bundle_construction...

    The Möbius strip can be constructed by a non-trivial gluing of two trivial bundles on open subsets U and V of the circle S 1.When glued trivially (with g UV =1) one obtains the trivial bundle, but with the non-trivial gluing of g UV =1 on one overlap and g UV =-1 on the second overlap, one obtains the non-trivial bundle E, the Möbius strip.

  4. Hopf fibration - Wikipedia

    en.wikipedia.org/wiki/Hopf_fibration

    However it is not a trivial fiber bundle, i.e., S 3 is not globally a product of S 2 and S 1 although locally it is indistinguishable from it. This has many implications: for example the existence of this bundle shows that the higher homotopy groups of spheres are not trivial in general.

  5. Covariant classical field theory - Wikipedia

    en.wikipedia.org/wiki/Covariant_classical_field...

    A Lagrangian: given a fiber bundle ′, the Lagrangian is a function : ′. Suppose that the matter content is given by sections of E {\displaystyle E} with fibre V {\displaystyle V} from above. Then for example, more concretely we may consider E ′ {\displaystyle E'} to be a bundle where the fibre at p {\displaystyle p} is V ⊗ T p ∗ M ...

  6. Fibration - Wikipedia

    en.wikipedia.org/wiki/Fibration

    A mapping : between total spaces of two fibrations : and : with the same base space is a fibration homomorphism if the following diagram commutes: . The mapping is a fiber homotopy equivalence if in addition a fibration homomorphism : exists, such that the mappings and are homotopic, by fibration homomorphisms, to the identities and . [2]: 405-406

  7. Homotopy groups of spheres - Wikipedia

    en.wikipedia.org/wiki/Homotopy_groups_of_spheres

    Stable homotopy groups of spheres are used to describe the group Θ n of h-cobordism classes of oriented homotopy n-spheres (for n ≠ 4, this is the group of smooth structures on n-spheres, up to orientation-preserving diffeomorphism; the non-trivial elements of this group are represented by exotic spheres). More precisely, there is an ...

  8. Fibered manifold - Wikipedia

    en.wikipedia.org/wiki/Fibered_manifold

    In general, a fibered manifold need not be a fiber bundle: different fibers may have different topologies. An example of this phenomenon may be constructed by taking the trivial bundle ( S 1 × R , π 1 , S 1 ) {\displaystyle \left(S^{1}\times \mathbb {R} ,\pi _{1},S^{1}\right)} and deleting two points in two different fibers over the base ...

  9. Frame bundle - Wikipedia

    en.wikipedia.org/wiki/Frame_bundle

    The orthonormal frame bundle () of the Möbius strip is a non-trivial principal /-bundle over the circle. In mathematics , a frame bundle is a principal fiber bundle F ( E ) {\displaystyle F(E)} associated with any vector bundle E {\displaystyle E} .