When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lyapunov exponent - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_exponent

    Lyapunov proved that if the system of the first approximation is regular (e.g., all systems with constant and periodic coefficients are regular) and its largest Lyapunov exponent is negative, then the solution of the original system is asymptotically Lyapunov stable. Later, it was stated by O. Perron that the requirement of regularity of the ...

  3. Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_function

    A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).

  4. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is A X A H − X + Q = 0 {\displaystyle AXA^{H}-X+Q=0} where Q {\displaystyle Q} is a Hermitian matrix and A H {\displaystyle A^{H}} is the conjugate transpose of A {\displaystyle A} , while the continuous-time Lyapunov equation is

  5. Master stability function - Wikipedia

    en.wikipedia.org/wiki/Master_stability_function

    The master stability function is now defined as the function which maps the complex number to the greatest Lyapunov exponent of the equation y ˙ = ( D f + γ D g ) y . {\displaystyle {\dot {y}}=(Df+\gamma Dg)y.}

  6. Lyapunov dimension - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_dimension

    The exact limit values of finite-time Lyapunov exponents, if they exist and are the same for all , are called the absolute ones [3] {+ (,)} = {()} {} and used in the Kaplan–Yorke formula. Examples of the rigorous use of the ergodic theory for the computation of the Lyapunov exponents and dimension can be found in. [ 11 ] [ 12 ] [ 13 ]

  7. Oseledets theorem - Wikipedia

    en.wikipedia.org/wiki/Oseledets_theorem

    The values of the Lyapunov exponents are invariant with respect to a wide range of coordinate transformations. Suppose that g : X → X is a one-to-one map such that ∂ g / ∂ x {\displaystyle \partial g/\partial x} and its inverse exist; then the values of the Lyapunov exponents do not change.

  8. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge. The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, which concerns the behavior of different but "nearby" solutions to differential equations.

  9. Floquet theory - Wikipedia

    en.wikipedia.org/wiki/Floquet_theory

    The real parts of the Floquet exponents are called Lyapunov exponents. The zero solution is asymptotically stable if all Lyapunov exponents are negative, Lyapunov stable if the Lyapunov exponents are nonpositive and unstable otherwise. Floquet theory is very important for the study of dynamical systems, such as the Mathieu equation.