Search results
Results From The WOW.Com Content Network
Magnesium (12 Mg) naturally occurs in three stable isotopes: 24 Mg, 25 Mg, and 26 Mg. There are 19 radioisotopes that have been discovered, ranging from 18 Mg to 40 Mg (with the exception of 39 Mg). The longest-lived radioisotope is 28 Mg with a half-life of 20.915(9) h.
Thus, magnesium-24 (24 is the mass number) is an atom with 24 nucleons (12 protons and 12 neutrons). Whereas the mass number simply counts the total number of neutrons and protons and is thus an integer, the atomic mass of a particular isotope (or "nuclide") of the element is the mass of a single atom of that isotope, and is typically expressed ...
Conversely, if it has more protons than electrons, it has a positive charge and is called a positive ion (or cation). The electrons of an atom are attracted to the protons in an atomic nucleus by the electromagnetic force. The protons and neutrons in the nucleus are attracted to each other by the nuclear force. This force is usually stronger ...
Neutrons stabilize the nucleus, because they attract protons, which helps offset the electrical repulsion between protons. As a result, as the number of protons increases, an increasing ratio of neutrons to protons is needed to form a stable nucleus; if too many or too few neutrons are present with regard to the optimum ratio, the nucleus ...
Magnesium ions interact with polyphosphate compounds such as ATP, DNA, and RNA. Hundreds of enzymes require magnesium ions to function. Magnesium compounds are used medicinally as common laxatives and antacids (such as milk of magnesia), and to stabilize abnormal nerve excitation or blood vessel spasm in such conditions as eclampsia. [15]
For example, uranium-238 usually decays by alpha decay, where the nucleus loses two neutrons and two protons in the form of an alpha particle. Thus the atomic number and the number of neutrons each decrease by 2 ( Z : 92 → 90, N : 146 → 144), so that the mass number decreases by 4 ( A = 238 → 234); the result is an atom of thorium-234 and ...
Protons define the entire charge of a nucleus, and hence its chemical identity. Neutrons are electrically neutral, but contribute to the mass of a nucleus to nearly the same extent as the protons. Neutrons can explain the phenomenon of isotopes (same atomic number with different atomic mass). The main role of neutrons is to reduce electrostatic ...
When there is an excess of electrons, the object is said to be negatively charged. When there are fewer electrons than the number of protons in nuclei, the object is said to be positively charged. When the number of electrons and the number of protons are equal, their charges cancel each other and the object is said to be electrically neutral.